4 resultados para Flow-cytometry system

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Systemic toxicity was evaluated in Sprague-Dawley (SD) rats and A-strain mice exposed to HCHO inhalation at 0, 0.5, 3, or 15 ppm for six hours/day, five days/week for up to 24 weeks. Toxicity was measured by flow cytometry to detect changes in cell cycle RNA and DNA content and by alkaline elution to detect DNA protein cross-link (DPC) formation.^ A G(,2)M block was detected in SD rat marrow following one week of exposure to 0.5, 3, or 15 ppm HCHO, but this block did not persist. No effect was noticed in mouse marrow. Only a minimal increase in RNA content was detected in rat or mouse marrow while exfoliated lung cells showed a significant increase in RNA activity after one week of exposure.^ Acute exposure in SD rats for four hours/day for one or three days at 150 ppm showed an increase in RNA activity in exfoliated lung cells but not in the marrow after one day. On the third day, dead cells were detected in exfoliated lung cells.^ In alkaline elution studies, no DPC were detected in marrow of SD rats after 24 weeks exposure up to 15 ppm. During acute exposures, a dose response relationship was detected in SD rat exfoliated lung cells which yielded cross-linking factors of 0.954, 1.237, and 1.417 following a four hour exposure to 15, 50, or 150 ppm, respectively. No DPC were detected in the marrow at 150 ppm. In vitro exposures to HCHO of CHO and SHE cells and rat marrow cells revealed the production of DPC and DNA-DNA cross-links.^ Cytoxan treatment of SD rats was used to provide positive controls for flow cytometry and alkaline elution. A drastic reduction in RNA content and cycling cells occurred one day following treatment. After four days, RNA content was greatly increased; and on day eleven the marrow had regenerated. DPCs were detected in both the marrow and the exfoliated lung cells.^ The lack of significant responses in SD rats and A-strain mice below 15 ppm HCHO is explainable by host defense mechanisms. Apparently, the mucociliary apparatus and enzymatic detoxification are sufficient to reduce systemic toxicity to low level concentrations of formaldehyde. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

IMMUNOLOGICAL MECHANISMS OF EXTRACORPOREAL PHOTOPHERESIS IN CUTANEOUS T CELL LYMPHOMA AND GRAFT VERSUS HOST DISEASE Publication No.___________ Lisa Harn-Ging Shiue, B.S. Supervisory Professor: Madeleine Duvic, M.D. Extracorporeal photopheresis (ECP) is an effective, low-risk immunomodulating therapy for leukemic cutaneous T cell lymphoma (L-CTCL) and graft versus host disease (GVHD), but whether the mechanism(s) of action in these two diseases is (are) identical or different is unclear. To determine the effects of ECP in vivo, we studied regulatory T cells (T-regs), cytotoxic T lymphocytes (CTLs), and dendritic cells (DCs) by immunofluorescence flow cytometry in 18 L-CTCL and 11 GVHD patients before and after ECP at Day 2, 1 month, 3 months, and 6 months. In this study, ECP was effective in 12/18 L-CTCL patients with a 66.7% overall response rate (ORR) and 6/11 GVHD patients with a 54.5% ORR. Prior to ECP, the percentages of CD4+Foxp3+ T cells in 9 L-CTCL patients were either lower (L-CTCL-Low, n=2) or higher (L-CTCL-High, n=7) than normal. Five of the 7 GVHD patients had high percentages of CD4+Foxp3+ T cells (GVHD-High). Six of 7 L-CTCL-High patients had >80% CD4+Foxp3+ T cells which were correlated with tumor cells, and were responders. Both L-CTCL-High and GVHD-High patients had decreased percentages of CD4+Foxp3+ and CD4+Foxp3+CD25- T cells after 3 months of treatment. CD4+Foxp3+CD25+ T cells increased in GVHD-High patients but decreased in L-CTCL-High patients after 3 months of ECP. In addition, numbers of CTLs were abnormal. We confirmed that numbers of CTLs were low in L-CTCL patients, but high in GVHD patients prior to ECP. After ECP, CTLs increased after 1 month in 4/6 L-CTCL patients whereas CTLs decreased after 6 months in 3/3 GVHD patients. Myeloid (mDCs) and plasmacytoid DCs (pDCs) were also low at baseline in L-CTCL and GVHD patients confirming the DC defect. After 6 months of ECP, numbers and percentages of mDCs and pDCs increased in L-CTCL and GVHD. MDCs were favorably increased in 8/12 L-CTCL responders whereas pDCs were favorably increased in GVHD patients. These data suggest that ECP is favorably modulating the DC subsets. In L-CTCL patients, the mDCs may orchestrate Th1 cell responses to overcome immune suppression and facilitate disease regression. However, in GVHD patients, ECP is favorably down-regulating the immune system and may be facilitating immune tolerance to auto-or allo-antigens. In both L-CTCL and GVHD patients, DCs are modulated, but the T cell responses orchestrated by the DCs are different, suggesting that ECP modulates depending on the immune milieu. _______________

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purpose of this study was to design, synthesize and develop novel transporter targeting agents for image-guided therapy and drug delivery. Two novel agents, N4-guanine (N4amG) and glycopeptide (GP) were synthesized for tumor cell proliferation assessment and cancer theranostic platform, respectively. N4amG and GP were synthesized and radiolabeled with 99mTc and 68Ga. The chemical and radiochemical purities as well as radiochemical stabilities of radiolabeled N4amG and GP were tested. In vitro stability assessment showed both 99mTc-N4amG and 99mTc-GP were stable up to 6 hours, whereas 68Ga-GP was stable up to 2 hours. Cell culture studies confirmed radiolabeled N4amG and GP could penetrate the cell membrane through nucleoside transporters and amino acid transporters, respectively. Up to 40% of intracellular 99mTc-N4amG and 99mTc-GP was found within cell nucleus following 2 hours of incubation. Flow cytometry analysis revealed 99mTc-N4amG was a cell cycle S phase-specific agent. There was a significant difference of the uptake of 99mTc-GP between pre- and post- paclitaxel-treated cells, which suggests that 99mTc-GP may be useful in chemotherapy treatment monitoring. Moreover, radiolabeled N4amG and GP were tested in vivo using tumor-bearing animal models. 99mTc-N4amG showed an increase in tumor-to-muscle count density ratios up to 5 at 4 hour imaging. Both 99mTc-labeled agents showed decreased tumor uptake after paclitaxel treatment. Immunohistochemistry analysis demonstrated that the uptake of 99mTc-N4amG was correlated with Ki-67 expression. Both 99mTc-N4amG and 99mTc-GP could differentiate between tumor and inflammation in animal studies. Furthermore, 68Ga-GP was compared to 18F-FDG in rabbit PET imaging studies. 68Ga-GP had lower tumor standardized uptake values (SUV), but similar uptake dynamics, and different biodistribution compared with 18F-FDG. Finally, to demonstrate that GP can be a potential drug carrier for cancer theranostics, several drugs, including doxorubicin, were selected to be conjugated to GP. Imaging studies demonstrated that tumor uptake of GP-drug conjugates was increased as a function of time. GP-doxorubicin (GP-DOX) showed a slow-release pattern in in vitro cytotoxicity assay and exhibited anti-cancer efficacy with reduced toxicity in in vivo tumor growth delay study. In conclusion, both N4amG and GP are transporter-based targeting agents. Radiolabeled N4amG can be used for tumor cell proliferation assessment. GP is a potential agent for image-guided therapy and drug delivery.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hemophilia A is a clotting disorder caused by functional factor VIII (FVIII) deficiency. About 25% of patients treated with therapeutic recombinant FVIII develop antibodies (inhibitors) that render subsequent FVIII treatments ineffective. The immune mechanisms of inhibitor formation are not entirely understood, but circumstantial evidence indicates a role for increased inflammatory response, possibly via stimulation of Toll-like receptors (TLRs), at the time of FVIII immunization. I hypothesized that stimulation through TLR4 in conjunction with FVIII treatments would increase the formation of FVIII inhibitors. To test this hypothesis, FVIII K.O. mice were injected with recombinant human FVIII with or without concomitant doses of TLR4 agonist (lipopoysaccharide; LPS). The addition of LPS combined with FVIII significantly increased the rate and the production of anti-FVIII IgG antibodies and neutralizing FVIII inhibitors. In the spleen, repeated in vivo TLR4 stimulation with LPS increased the relative percentage of macrophages and dendritic cells (DCs) over the course of 4 injections. However, repeated in vivo FVIII stimulation significantly increased the density of TLR4 expressed on the surface of all spleen antigen presenting cells (APCs). Culture of splenocytes isolated from mice revealed that the combined stimulation of LPS and FVIII also synergistically increased early secretion of the inflammatory cytokines IL-6, TNF-α, and IL-10, which was not maintained throughout the course of the repeated injections. While cytokine secretion was relatively unchanged in response to FVIII re-stimulation in culture, LPS re-stimulation in culture induced increased and prolonged inflammatory cytokine secretion. Re-stimulation with both LPS and FVIII induced cytokine secretion similar to LPS stimulation alone. Interestingly, long term treatment of mice with LPS alone resulted in splenocytes that showed reduced response to FVIII in culture. Together these results indicated that creating a pro-inflammatory environment through the combined stimulation of chronic, low-dose LPS and FVIII changed not only the populations but also the repertoire of APCs in the spleen, triggering the increased production of FVIII inhibitors. These results suggested an anti-inflammatory regimen should be instituted for all hemophilia A patients to reduce or delay the formation of FVIII inhibitors during replacement therapy.